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Preview
In this chapter, we will look at aggregate risk models, which combine claim frequency and
severity. The main focus will be on collective risk models, where the aggregate loss is
modelled by a compound distribution. Different methods in computing aggregate loss dis-
tributions will be introduced. We will also look at the impact of individual and group
deductibles.

Key topics in this chapter:
1. Individual and collective risk models;

2. Panjer’s recursion;

3. Approximation methods for aggregate loss;

4. Coverage modifications in severity and aggregate loss.

1 Individual Risk Model
Consider a portfolio with n individual insurance policies. Let Xi, i = 1, 2, . . . , n be the
severity of the i-th policy. Then, the aggregate loss Sn is given by

Sn = X1 +X2 + · · ·+Xn =
n∑

i=1

Xi.

In this course, we will assume that X1, . . . , Xn being (mutually) independent. The re-
lationship of distributional quantities between S and the severity distributions are listed
below.

1. Mean and Variance:

E[Sn] =
n∑

i=1

E[Xi] and Var[Sn] =
n∑

i=1

Var[Xi].
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2. Generating Functions:

MSn(t) =
n∏

i=1

MXi
(t) and PSn(t) =

n∏
i=1

PXi
(t).

1.1 Convolutions

Assume that X1, . . . , Xn are i.i.d. variables with a common distribution X. The distribution
of the aggregate loss Sn is given by the n-fold convolution of the distribution X.

Definition 1.1 Let X1, . . . , Xn be i.i.d. variables with a common distribution X. The
cdf of S is given by FS(s) = F ∗n

X (s), where

F ∗n
X (s) = P(X1 + · · ·+Xn ≤ s), s ∈ R. (1)

It is clear that for n = 1, F ∗1
X (s) = P(X1 ≤ s) = FX(s). For n ≥ 1, we have the following

recursive formula:

Proposition 1.1 Let X be a non-negative random variable. For n ≥ 1, F ∗n
X can be

computed recursively by

F
∗(n+1)
X (s) =


∑
x≤s

F ∗n
X (s− x)pX(x), if X is discrete;∫ s

0

F ∗n
X (s− x)fX(x)dx, if X is continuous.

Proof. We only consider the case when X is continuous. For any n ≥ 1, by the law of total
probability,

F ∗(n+1)(s) = P(X1 + · · ·+Xn +Xn+1 ≤ s) = P(Sn ≤ s−Xn+1)

=

∫ s

0

P(Sn ≤ s− x|Xn+1 = x)fX(x)dx

=

∫ s

0

P(Sn ≤ s− x)fX(x)dx

=

∫ s

0

F ∗n
X (s− x)fX(x)dx,

where the third line follows from the independence of Sn and Xn+1. Notice that the inte-
grating region is from 0 to s, since Sn+1 ≤ s implies Xn+1 ≤ s.

2



For some special severity distributions, even X1, . . . , Xn are not identically distributed, the
distribution of the aggregate loss Sn will belong to the same type of distribution, see Table
1 below.

Xi Sn

N (µi, σ
2
i ) N (

∑n
i=1 µi,

∑n
i=1 σ

2
i )

Exp(θ) Gamma(n, θ)
Gamma(αi, θ) Gamma(

∑n
i=1 αi, θ)

Table 1: Relationship between distributions of severity and aggregate losses

Example 1.1 An insurance portfolio consists of 3 policies. Suppose that the severity of
the 3 policies are i.i.d. exponential distribution with a common mean 1, 200. Find the
probability that the aggregate loss is at least 5, 000.
Solution:
Since X1, X2, X3 ∼ Exp(1200), we have S3 ∼ Gamma(3, 1200). The pdf of S3 is given by

fS3(s) =
1

2(1200)3
s2e−

s
1200 , s > 0.

Hence,

P(S3 > 5000) =

∫ ∞

5000

1

2(1200)3
s2e−

s
1200ds = 0.2147.

2 Collective Risk Model
In practice, the number of claims N is random. If X1, X2, . . . , are the severity of individual
claims, the aggregate loss S can be modelled by the following compound variable:

S = X1 +X2 + · · ·+XN =
N∑
i=1

Xi.

We shall make the following assumptions:

1. When N = 0, S := 0;

2. X1, X2, . . . , are i.i.d. with a common distribution X;

3. X1, X2, . . . , are independent of N , i.e., individual claim sizes and number of claims are
independent.
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2.1 Mean and Variance of Aggregate Loss

From Section 5 of Chapter 3, we know that S follows a compound distribution, where the claim
frequency N is the primary distribution, and the loss severity X is the secondary distribution.
By Theorem 5.1 and Proposition 5.2 in Chapter 3, we also have the following:

1. Mean and Variance:

E[S] = E[X]E[N ] and Var[S] = E[N ]Var[X] + E2[X]Var[N ].

2. Generating Functions:

PS(t) = PN(PX(t)) and MS(t) = PN(MX(t)).

Example 2.1 Suppose the severity of each claim are independent and identically dis-
tributed, which follows a common gamma distribution with α = 2 and θ = 1, 000. Also,
the claim frequency follows a Poisson distribution with mean 20. Calculate the expected
value and the variance of the aggregate loss.
Solution:
Since X ∼ Gamma(2, 1000) and N ∼ Poi(20), we have E[X] = 2(1000) = 2000, E[N ] =
20, Var[X] = 2(1000)2 and Var[N ] = 20. Hence,

E[S] = E[X]E[N ] = 20(2000) = 40, 000,

Var[S] = E[N ]Var[X] + E2[X]Var[N ]

= 20× 2(1000)2 + (20002)(20)

= 60, 000, 000.

Example 2.2 Suppose the distributions of the severity X of each claim, and the number
of claims N , are discretely distributed with the following pmfs:

n P(N = n)
1 0.7
2 0.2
3 0.1

x P(X = x)
0 0.6

100 0.2
1000 0.2

A policy is written on the aggregate loss with a pure premium that equals the expected
aggregate loss, plus 0.5 times of the standard deviation of the aggregate loss. Calculate
the pure premium.
Solution:
From the table, we know that
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E[N ] = 1.4, E[N2] = 2.4, Var[N ] = E[N2]− E2[N ] = 0.44,

E[X] = 220, E[X2] = 202, 000, Var[X] = E[X2]− E2[X] = 153, 600.

Hence,

E[S] = E[X]E[N ] = 220(1.4) = 308,

Var[S] = E[N ]Var[X] + E2[X]Var[N ]

= (1.4)(153, 600) + (2202)(0.44)

= 236, 336.

Therefore, the pure premium is given by

P = E[S] + 0.5
√

Var[S] = 308 + 0.5
√

236, 336 = 551.0720.

2.2 Distribution of Aggregate Loss

To deduce the cdf/pdf of the aggregate loss, we apply the law of total probability by condi-
tioning on the number of claims N :

FS(s) = P(X1 + · · ·+XN ≤ s)

=
∞∑
n=0

P(X1 + · · ·+Xn ≤ s|N = n)P(N = n)

=
∞∑
n=0

F ∗n
X (s)P(N = n),

where F ∗n
X is the n-fold convolution of FX defined in (1), see also Proposition 1.1. The pdf

of S can thus obtained by differentiating the cdf:

fS(s) =
∞∑
n=0

f ∗n
X (s)P(N = n),

where f ∗n
X (s) = d

ds
f ∗n
X (s) is the cdf of X1 + · · ·+Xn.

It is in general a difficult task to compute the cdf/pdf of the aggregate loss distribution,
unless the severity and the frequency distributions take very special forms. In Sections 3-4,
we will discuss some recursive and numerical methods to compute the distribution of S.
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3 Convolution and Panjer’s Recursion
In this section, we will deviate from the usual treatment, and assume the severity X follows a
discrete distribution with support N0. Indeed, a continuous distribution can be approximated
by discrete ones via discretization; see Section 4.1. By this assumption, the distributions of
X, N , and S are all discrete. We adopt the following notation: for n = 0, 1, 2, . . . ,

1. pn := P(N = n);

2. fn := P(X = n);

3. gn := P(S = n).

By the convolution formula, the pmf {gn}∞n=0 of S can be computed by

gk =
∞∑
j=0

pj
∑

i1+···+ij=k

fi1 · · · fij =
∞∑
j=0

pjf
∗j
k , (2)

where
f ∗j
k := P(X1 + · · ·+Xj = k) =

∑
i1+···+ij=k

fi1 · · · fij .

Example 3.1 For an insurance coverage, the number of claims follows a Poisson distri-
bution with mean 5. Claim size is independent of the claim frequency, which is distributed
as follows:

Claim Size Probability
1 0.3
2 0.5
3 0.2

Let S be the aggregate loss. Calculate P(S ≤ 3).
Solution:
We compute g0, g1, g2, and g3 by the convolution formula. First, S = 0 iff N = 0. Hence
g0 = p0 = e−5.
S = 1 iff N = 1 and X = 1. Hence,

g1 = p1f1 = 0.3
(
5e−5

)
= 1.5e−5.

Next, S = 2 if N = 1 and X = 2, or N = 2 and X1 = X2 = 1. Hence,

g2 = p1f2 + p2f
2
1 = 0.5(5e−5) + 0.32

(
25e−5

2

)
= 3.625e−5.
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Finally, S = 3 if N = 1 and X = 3, or N = 2 with loss sizes 1 and 2 (with 2 permutations),
or N = 3 and each loss has a loss size of 1. Hence,

g3 = p1f3 + 2p2f1f2 + p3f
3
1 = 0.2(5e−5) + 2(12.5e−5)(0.3)(0.5) + (0.3)3

(
125e−5

6

)
= 5.3125e−5.

Therefore,

P(S ≤ 3) = (1 + 1.5 + 3.625 + 5.3125) e−5 = 11.4375e−5 = 0.0771.

When the frequency distribution N belongs to the (a, b, 0) or the (a, b, 1) class, the pmf of S
can be computed using simplier recursive formulas, known as Panjer’s recursion :

Theorem 3.1 Suppose that N belongs to the (a, b, 0) class. Then, the pmf {gk}∞k=0 of
the aggregate loss S satisfies the following recursion:

g0 = PN(PX(0)) = PN(f0),

gk =
1

1− af0

k∑
j=1

(
a+

bj

k

)
fjgk−j, k = 1, 2, . . .

(3)

The recursion (3) allows us to compute the pmf of S without having to explicitly compute
the convolution f ∗j

n . During exams, you will be asked to compute gk only for small values of
k. Below we provide a proof for the case N ∼ Poi(λ), i.e., a = 0 and b = λ.

Proof. Consider the pgf of S, which is given by

PS(t) = g0 +
∞∑
k=1

gkt
k. (4)

Differentiating both sides with respect to t yields

P ′
S(t) =

∞∑
k=1

kgkt
k−1. (5)

On the other hand, when N ∼ Poi(λ), we can also write the pgf of S as

PS(t) = PN(PX(t)) = eλ(PX(t)−1).

By differentiating both sides with respect to t, we obtain

P ′
S(t) = λeλ(PX(t)−1)P ′

X(t) = λP ′
X(t)PS(t). (6)
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Substituting (4) and

P ′
X(t) =

∞∑
j=1

jfjt
j−1,

into (6), we have

P ′
S(t) = λ

(
∞∑
j=1

jfjt
j−1

)(
g0 +

∞∑
i=1

git
i

)

= λ
∞∑
k=1

(
k∑

j=1

jfjgk−j

)
tk−1.

(7)

By matching the coefficients of tk−1 of (5) and (7), we obtain

gk =
k∑

j=1

λj

k
fjgk−j,

which agrees with (3) for a = 0 and b = λ.

When N belongs to the (a, b, 1) class, we have the following Panjer’s recursion:

Theorem 3.2 Suppose that N belongs to the (a, b, 1) class. Then, the pmf {gk}∞k=0 of
the aggregate loss S satisfies the following recursion:

g0 = PN(PX(0)) = PN(f0),

gk =
1

1− af0

[
(p1 − (a+ b)p0) fk +

k∑
j=1

(
a+

bj

k

)
fjgk−j

]
, k = 1, 2, . . .

(8)

Example 3.2 Repeat Example 3.1 using Panjer’s recursion.
Solution:
N ∼ Poi(5) belongs to the (a, b, 0) class with a = 0 and b = 5. The mgf of N is
PN(t) = e5(t−1). Hence, g0 = PN(f0) = PN(0) = e−5. Using Panjer’s recursion, we have

g1 =
5 · 1
1

f1g0 = 5(0.3)(e−5) = 1.5e−5,

g2 =
5 · 1
2

f1g1 +
5 · 2
2

f2g0 = 2.5(0.3)(1.5e−5) + 5(0.5)(e−5) = 3.625e−5,

g3 =
5 · 1
3

f1g2 +
5 · 2
3

f2g1 +
5 · 3
3

f3g0 =
5

3
(0.3)(3.625e−5) +

10

3
(0.5)(1.5e−5) + 5(0.2)(e−5)

= 5.3125e−5.
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Hence, we get the same g0, g1, g2, and g3, and thus P(S ≤ 3) = 0.0771.

4 Approximation Methods
Computing the distribution of the compound variable S is in general difficult. In this section,
we discuss two approximation methods to compute the distribution of S.

4.1 Method of Rounding

Panjer’s recursion is only applicable when X follows a discrete distribution, which is not a
very realistic assumption. Nevertheless, even X is continuously distributed, we can estimate
it using a discrete distribution by discretization . The method of rounding is a special
technique to discretize a continuous distribution.

Let X be a continuous, non-negative random variable. We approximate X by a discrete
random variable X ′, which is supported in {0, h, 2h, 3h, · · · } = {kh : k ∈ N0}. We call the
value h > 0 the span. The pmf {fkh}∞k=0 of X ′ is given by the following:

f0 = P(X ′ = 0) = FX(0.5h),

fkh = P(X ′ = kh) = FX ((k + 0.5)h)− FX ((k − 0.5)h) , k = 1, 2, 3, . . . .

Indeed, for k ∈ N, the probability fkh is given by

fkh =

∫ (k+0.5)h

(k−0.5)h

fX(x)dx,

which roughly approximates the probability of X around kh.

Example 4.1 Claim counts follow a Poisson distribution with mean 3. Claim sizes follow
an exponential distribution with mean 2. Claim counts and claim sizes are independent.
The severity distribution is discretized using the method of rounding with span 1. Using
the discrete approximation of the severity distribution, calculate the probability that the
aggregate loss is less than or equal to 3.
Solution:
The cdf of X is given by FX(x) = 1− e−x/2. Using this, we can compute the pmf of X ′:

f0 = FX(0.5) = 1− e−
0.5
2 = 0.2212,

f1 = FX(1.5)− FX(0.5) = e−
0.5
2 − e−

1.5
2 = 0.3064,

f2 = FX(2.5)− FX(1.5) = e−
1.5
2 − e−

2.5
2 = 0.1859,

f3 = FX(3.5)− FX(2.5) = e−
2.5
2 − e−

3.5
2 = 0.1127.
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Since N ∼ Poi(3), we have a = 0 and b = 3. Hence,

g0 = PN(f0) = e3(f0−1) = 0.0967.

Using Panjer’s recursion, we have

g1 =
3 · 1
1

f1g0 = 3(0.3064)(0.0967) = 0.0889,

g2 =
3 · 1
2

f1g1 +
3 · 2
2

f2g0 = 1.5(0.3064)(0.0889) + 3(0.1859)(0.0967) = 0.0948,

g3 =
3 · 1
3

f1g2 +
3 · 2
3

f2g1 +
3 · 3
3

f3g0

= (0.3064)(0.0948) + 2(0.1859)(0.0889) + 3(0.1127)(0.0967) = 0.0948.

Therefore, the required probability is g0 + g1 + g2 + g3 = 0.3751.

4.2 Normal Approximation

When E[N ] is sufficiently large, the normal approximation could be a convenient method to
compute the distribution of S, as justified by the central limit theorem:

S − E[S]√
Var[S]

d→ N (0.1).

If you were asked to compute P(S > a), you will need to follow the steps below:

1. Compute E[S] and Var[S];

2. Continuity corrections for discrete distributions: suppose that S could take values
{s0, s1, s2, · · · } with sn+1 > sn for n ≥ 0, the following adjustments have to be made:

Probability Corrections
P(S > sn)

P
(
S > sn+sn+1

2

)
P(S ≥ sn+1)

P(S > s), s ∈ (sn, sn+1)
P(S ≤ sn)

P
(
S < sn+sn+1

2

)
P(S < sn+1)

P(S < s), s ∈ (sn, sn+1)

Table 2: Continuity corrections for discrete severity
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Example 4.2 You are given the following:
• A portfolio consists of 1,600 independent risks.
• For each risk, the probability of at least one claim is 0.4.
Using the Central Limit Theorem, determine the approximate probability that the num-
ber of risks in the portfolio with at least one claim will be greater than 620.
Solution:
The distribution of the number of risks N in the portfolio with at least one claim is given
by N ∼ Bin(1600, 0.4). Hence, E[N ] = 1600(0.4) = 640 and Var[N ] = 1600(0.4)(1 −
0.4) = 384. Let Z ∼ N (0, 1). Since N is discretely distributed, by continuity correction,

P(N > 620) ≈ P
(
Z >

620.5− 640√
384

)
= 1− Φ(−0.9951) = 0.8402.

Example 4.3 (SOA 2018 STAM SAMPLE QUESTION 91) The number of auto
vandalism claims reported per month at Sunny Daze Insurance Company (SDIC) has
mean 110 and variance 750. Individual losses have mean 1101 and standard deviation 70.
The number of claims and the amounts of individual losses are independent. Using the
normal approximation, calculate the probability that SDIC’s aggregate auto vandalism
losses reported for a month will be less than 100,000.
Solution:
We first calculate the mean and variance of the aggregate loss:

E[S] = E[X]E[N ] = (110)(1101) = 121, 110,

Var[S] = E[N ]Var[X] + E2[X]Var[N ] = (110)(702) + (1101)2(750) = 909, 689, 750.

By normal approximation, we have

P(S < 100, 000) ≈ P
(
Z <

100, 000− 121, 110√
909, 689, 750

)
= P(Z < −0.6999) = 0.2420.

5 Aggregate Payment with Severity Deductibles
The variable S computes the aggregate ground-up losses of all issued policies. However, when
(ordinary or franchise) deductibles are imposed on the policies, not all losses are going to lead
to payments. Below we introduce two methods to compute the aggregate payments.

• Method 1: Per-loss basis

Let d be an ordinary deductible applied to each policy, and NL be the number of loss.
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Then, the payment from the k-th loss, k = 1, 2, . . . , is given by Y L
k := (Xk − d)+. The

aggregate payment is thus

SL = Y L
1 + Y L

2 + · · ·+ Y L
NL =

NL∑
k=1

Y L
k .

Using this, the expected aggregate payments and the variance of aggregate payments are
given by

E[SL] = E[Y L]E[NL] = E[(X − d)+]E[NL].

• Method 2: Per-payment basis

In the second method, instead of summing the payment variables for all claims, we only
aggregate those that will lead to a payment (i.e., losses that exceed the deductible). Let
NP be the number of payments. Recall that

NP = I1 + I2 + · · ·+ INL =
NL∑
k=1

Ik,

where for each k ≥ 1, Ik ∼ Bernoulli(v), and v = P(X > d); see Section 6 of Chapter 3
for details. Let Y P

k := Xk − d|Xk > d be the payment per payment variable. Then, the
aggregate payment is given by

SP = Y P
1 + Y P

2 + · · ·+ Y P
NP =

NP∑
k=1

Y L
k .

Using this, the expected aggregate payment is given by

E[SP ] = E[Y P ]E[NP ] = E[X − d|X > d]E[NP ].

As shown by the following theorem, the two methods indeed give the same result.

Theorem 5.1 The variables SL and SP have the same distribution.

Proof. We shall show that the pgfs of SL and SP are the same. We first derive the pgf of
SP , where we will need the pgf of NP . Let v = P(X > d) and I ∼ Bernoulli(v), we have

PNP (t) = PNL(PI(t)) = PNL(1− v + vt).

The pgf of SP is thus given by

PSP (t) = PNP (PY P (t)) = PNL(1− v + vPY P (t)).
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Next, we derive the pgf of SL, which is given by

PSL(t) = PNL(PY L(t))

By conditioning on the event Y L > 0 and Y L = 0 (recall that Y L ≥ 0, so we either have
Y L > 0 or Y L = 0), and noticing that Y L|Y L > 0 = X − d|X > d = Y P , we have

PY L(t) = E[tY L

] = E[tY L|Y L > 0]P(Y L > 0) + E[tY L|Y L = 0]P(Y L ≤ 0)

= E[tY P

]v + (1)(1− v)

= 1− v + vPY P (t).

Therefore,
PSL(t) = PNL(PY L(t)) = PNL(1− v + vPY P (t)) = PSP (t).

Remark 5.2. When calculating the aggregate payment, either use the per-loss basis (using
NL and Y L), or the per-payment basis (using NP and Y P ), and do NOT mix up the two.

Example 5.1 (SOA 2018 STAM SAMPLE QUESTION 212) For an insurance:
(i) The number of losses per year has a Poisson distribution with λ = 10.
(ii) Loss amounts are uniformly distributed on (0, 10).
(iii) Loss amounts and the number of losses are mutually independent.
(iv) There is an ordinary deductible of 4 per loss.

Calculate the variance of aggregate payments in a year.
Solution:
We solve the problem using both the per-loss and the per-payment basis.
Per-loss basis:
For the per-loss basis, we have E[NL] = 10 = Var[NL]. On the other hand,

E[Y L] =

∫ 10

4

(x− 4)fX(x)dx =

∫ 10

4

x− 4

10
dx = 1.8,

E[(Y L)2] =

∫ 10

4

(x− 4)2

10
dx = 7.2,

Var[Y L] = 7.2− 1.82 = 3.96.

Hence,

Var[SL] = E[NL]Var[Y L] + E2[Y L]Var[NL] = 10× 3.96 + 1.82 × 10 = 72.
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Per-payment basis:
Since X ∼ Uniform(0, 10), we have v = P(X > 4) = 1 − 0.4 = 0.6. Hence, NP ∼
Poi(vλ) = Poi(6). On the other hand, the support of Y P is (0, 10 − 4) = (0, 6), and
Y P ∼ Uniform(0, 6). Indeed, for y ∈ (0, 6) the pdf of Y P is given by

fY P (y) =
fX(y + d)

SX(d)
=

fX(y + 4)

0.6
=

1/10

0.6
=

1

6
.

Using these, we have E[NP ] = 6 = Var[NP ], E[Y P ] = (0 + 6)/2 = 3, Var[Y P ] =
(6− 0)2/12 = 3. Therefore,

Var[SP ] = E[NP ]Var[Y P ] + E2[Y P ]Var[NP ] = 6× 3 + 32 × 6 = 72.

6 Deductibles on Aggregate Losses
In the last section, we discussed the aggregate payments when a deductible is imposed in
individual losses. In this section, we consider the case when a deductible is imposed on the
aggregate loss. For instance, reinsurance companies often cover the aggregate losses of an
insurance company, applying a single deductible to the overall total.

Definition 6.1 Let S be the aggregate loss subject to a deductible d. This insurance is
called stop-loss insurance . The expected cost per loss of this insurance is called the
(net) stop-loss premium :

E[(S − d)+] = E[S]− E[S ∧ d].

If the distribution (pdf/pmf or cdf) of S is available, we can compute the stop-loss premium
by the following formula:

E[(S − d)+] =

∫ ∞

d

(1− FS(s))ds

=


∫ ∞

d

(s− d)fS(s)ds, if S is continuous;∑
s>d

(s− d)pS(s), if S is discrete.

Another way to compute the stop-loss premium is by utilizing the formula

E[(S − d)+] = E[S]− E[S ∧ d],
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so we will have to compute E[S] and E[S ∧ d]. The former is usually easy to compute (recall
that E[S] = E[X]E[N ]), so we focus on the latter.

If S follows a discrete distribution, we can compute the pmf of S using methods in Section
3. We can then compute the stop-loss premium as follows:

Theorem 6.1 Suppose that S is a discrete random variable supported in
{0, h, 2h, 3h, . . . }, where h > 0 is fixed. Then, for d > 0,

E[S ∧ d] = h

u−1∑
m=0

[1− FS(mh)] + (d− uh) [1− FS(hu)]

E[(S − d)+] = h
∞∑

m=0

[1− FS((m+ u)h)]− (d− uh) [1− FS(hu)] .

where u :=

⌈
d

h

⌉
− 1 .

Remark 6.2.

1. If u− 1 < 0, then
∑u−1

m=0[1− FS(mh)] = 0, and the expected limited loss is reduced to

E[S ∧ d] = (d− uh)[1− FS(uh)].

2. As a consequence of Theorem 6.1, if d is a multiple of h, then u = d/h − 1, and the
formulas are reduced to

E[S ∧ d] = h

d/h−1∑
m=0

[1− FS(mh)]

E[(S − d)+] = h

∞∑
m=0

[1− FS(mh+ d)] .

3. Alternatively, using the pmf of S, we can compute E[S ∧ d] by

E[S ∧ d] =
u∑

m=0

mhP(S = mh) + dP(S > uh).

Proof. By the definition of u, we have uh < d ≤ (u+ 1)h. Using this, we have

E[S ∧ d] =

∫ d

0

[1− FS(s)] ds
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=
u−1∑
m=0

∫ (m+1)h

mh

[1− FS(s)] ds+

∫ d

uh

[1− FS(s)] ds

=
u−1∑
m=0

∫ (m+1)h

mh

[1− FS(mh)] ds+

∫ d

uh

[1− FS(uh)] ds

= h

u−1∑
m=0

[1− FS(mh)] + (d− uh)[1− FS(uh)].

On the other hand,

E[S] =
∫ ∞

0

[1− FS(s)] ds

=
∞∑

m=0

∫ (m+1)h

mh

[1− FS(s)] ds

=
∞∑

m=0

∫ (m+1)h

mh

[1− FS(mh)] ds

= h
∞∑

m=0

[1− FS(mh)].

Therefore,

E[(S − d)+] = E[S]− E[S ∧ d]

= h
∞∑

m=0

[1− FS(mh)]− h
u−1∑
m=0

[1− FS(mh)]− (d− uh)[1− FS(uh)]

= h
∞∑

m=u

[1− FS(mh)]− (d− uh)[1− FS(uh)]

= h
∞∑

m=0

[1− FS((m+ u)h)]− (d− uh)[1− FS(uh)].

If we know the stop-loss premium when the deductible is a and b, and P(a < S < b) = 0,
we can then compute the stop-loss premium with deductible d for any d ∈ [a, b] using
interpolation.

Theorem 6.3 Suppose that P(a < S < b) = 0. Then, for any d ∈ [a, b],

E[(S − d)+] =
b− d

b− a
E[(S − a)+] +

d− a

b− a
E[(S − b)+].
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Proof. If P(a < S < b) = 0, then E[(S−d)+] is a linear function of d when d ∈ [a, b]. Indeed,

E[(S − d)+] =

∫ ∞

d

[1− FS(s)]ds =

∫ ∞

a

[1− FS(s)]ds−
∫ d

a

[1− FS(s)]ds

= E[(S − a)+]− (d− a)[1− FS(a)].

Since this holds for any d ∈ [a, b], in particular, we have

E[(S − b)+] = E[(S − a)+]− (b− a)[1− FS(a)].

This gives

1− FS(a) =
E[(S − a)+]− E[(S − b)+]

b− a
.

Substituting this into the first equation, we have

E[(S − d)+] = E[(S − a)+]− (d− a)[1− FS(a)]

= E[(S − a)+]− (d− a)

(
E[(S − a)+]− E[(S − b)+]

b− a

)
=

b− d

b− a
E[(S − a)+] +

d− a

b− a
E[(S − b)+].

Example 6.1 The number of claims of an insurance coverage has a geometric distribu-
tion with mean 4. The distribution of claim sizes is as follows:

x P(X = x)
2 0.45
4 0.25
6 0.2
8 0.1

A stop-loss reinsurance contract has a deductible of 5. Find the stop-loss premium for
the reinsurance contract.
Solution:
Let S be the aggregate loss and N be the number of claims. We have E[X] = 2(0.45) +
4(0.25) + 6(0.2) + 8(0.1) = 3.9. Hence, E[S] = E[X]E[N ] = (3.9)(4) = 15.6.
Next, we compute the distribution of S. Since X takes values in 2, 4, 6, 8, S takes values
in the set {0, 2, 4, 6, 8, . . . }, i.e., the set of positive even integers and zero. Using the
notation in Theorem 6.1, we have h = 2 and u = ⌈5/2⌉−1 = 2. Next, we compute g2, g4,
and g6, where gk = P(S = k). To this end, we first recall the pmf of N , which is given
by

pk = P(N = k) =

(
4

1 + 4

)k (
1

1 + 4

)
= 0.2(0.8)k, k = 0, 1, 2 . . . .

Using this, we have p0 = 0.2, p1 = (0.2)(0.8) = 0.16, and p2 = (0.2)(0.8)2 = 0.128. Next,
we compute the pmf of S:
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g0 = P(N = 0) = p0 = 0.2,

g2 = P(N = 1)P(X = 2) = (0.16)(0.45) = 0.072,

g4 = P(N = 1)P(X = 4) + P(N = 2)[P(X = 2)]2

= (0.16)(0.25) + (0.128)(0.45)2 = 0.06592,

P(S > 4) = 1− g0 − g2 − g4 = 0.66208.

Hence,

E[S ∧ 5] = 0 · g0 + 2 · g2 + 4 · g4 + 5P(S > 5)

= 2(0.072) + 4(0.06592) + 5P(S > 4)

= 0.41368 + 3.2954 = 3.71808.

Alternatively, using Theorem 6.3, by noticing that P(S > 0) = 1− g0 = 0.8, P(S > 2) =
1− g0 − g2 = 0.728, we have

E[S ∧ 5] = 2 [P(S > 0) + P(S > 2)] + (5− 4)P(S > 4) = 3.71808.

Therefore, E[(S − 5)+] = E[S]− E[S ∧ 5] = 15.6− 3.71808 = 11.88192.

Example 6.2 Repeat Example 6.1 using interpolation by calculating E[(S − 4)+] and
E[(S − 6)+].
Solution:
We compute E[S ∧ 2] and E[S ∧ 4] using Theorem 6.1:

E[S ∧ 4] = 2 [P(S > 0) + P(S > 2)] = 2(0.8 + 0.728) = 3.056,

E[S ∧ 6] = 2 [P(S > 0) + P(S > 2) + P(S > 4)] = 2(0.8 + 0.728 + 0.66208) = 4.38016.

Hence,

E[(S − 4)+] = E[S]− E[S ∧ 4] = 12.544,

E[(S − 6)+] = E[S]− E[S ∧ 6] = 11.219844.

By interpolation, we have

E[(S − 5)+] =
5− 4

6− 4
E[(S − 6)+] +

6− 5

6− 4
E[(S − 4)+] = 11.88192.
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